Test II Exercise Solutions

1. Consider the field $\mathbb{Z}_{17}=\mathbb{Z} /(17)$.
(a) Find the reciprocals $1^{-1}, 2^{-1}, \ldots, 16^{-1} \in \mathbb{Z}_{17}$.

We find the reciprocal of any $[a] \neq[0]$ by writing as $+p t=1$, then taking $[a]^{-1}=[s]$. For example, for 6^{-1}, we do the Euclidean Algorithm for 6,17 :

$$
\begin{array}{r|r}
17=6(2)+5 & \begin{array}{c}
5=17-6(2) \\
6=5(1)+1 \\
1
\end{array} \\
& =6-5(1) \\
& =6-(17-6(2))(1) \\
& =6(3)+17(-1)
\end{array}
$$

Thus $6(3)+17(-1)=1=\operatorname{gcd}(6,17)$; we knew that 1 would be the gcd since $[6] \neq[0]$ so $17 \nmid 6$ and the only common divisor is ± 1. Finally we have $[6][3]=[1] \in \mathbb{Z}_{17}$, and $[6]^{-1}=[3]$.
Once we are comfortable remembering that all numbers are mod 17 , we can drop the [] notation and just write $6^{-1}=3 \in \mathbb{Z}_{17}$.
(b) The squares of the elements of \mathbb{Z}_{17} are:

$$
1,4,9,16,8,2,15,13,13,15,2,8,16,9,4,1
$$

The symmetry comes from the fact that $[17-a]^{2}=[-a]^{2}=[a]^{2}$.
(c) The quadratic formula is valid in any field (or even commutative ring), so long as its features make sense: we must have field elements corresponding to $\frac{1}{2 a}=(2 a)^{-1}$ and $\sqrt{b^{2}-4 a c}$. Here we get:

$$
\begin{aligned}
x & =\frac{1}{2(2)}\left(-4 \pm \sqrt{4^{2}-4(2)(1)}\right) \\
& =4^{-1}(-4 \pm \sqrt{8})=13(-4 \pm 5)=13 \text { or } 2
\end{aligned}
$$

Here we use that $4^{-1}=13$ and $5^{2}=8$ so $\sqrt{8}= \pm 5$.
2. We construct a field K with 8 elements
(a) There $2^{3}=8$ degree 3 polynomials in $\mathbb{Z}_{2}[x]$. For degree ≤ 3, any non-trivial factorization must include a linear factor, and a linear factor is equivalent to a root, so the irreducible $p(x)$ are those with no root in $\mathbb{Z}_{2}: p(x)=x^{3}+x+1$ and $x^{3}+x^{2}+1$. Let us take the first of these: $p(x)=x^{3}+x+1$.
We construct $K=\mathbb{Z}_{2}[x] /\left(x^{3}+x+1\right)$. The division algorithm will cut down any polynomial $f(x)$ to a remainder $r(x)$ of degree $<\operatorname{deg} p(x)=3$, i.e. $r(x)=a x^{2}+b x+c$, and these are the standard forms of elements. In compact notation we write $r(\alpha)$ for $[r(x)]$:

$$
K=\left\{0,1, \alpha, \alpha+1, \alpha^{2}, \alpha^{2}+1, \alpha^{2}+\alpha, \alpha^{2}+\alpha+1\right\}
$$

Here $\alpha=[x]$, satisfying $p(\alpha)=\alpha^{3}+\alpha+1=0 \in K$.
(b) In pefect analogy to $\# 1(\mathrm{a})$, we find the reciprocal of any $f(\alpha)=$ $[f(x)] \neq[0]$ by writing $f(x) g(x)+p(x) q(x)=1$, then taking $\frac{1}{f(\alpha)}=[f(x)]^{-1}=[g(x)]=g(\alpha)$.
For example, for $\frac{1}{\alpha^{2}+\alpha+1}=\left[x^{2}+x+1\right]^{-1}$, we do the Euclidean Algorithm for $f(x)=x^{2}+x+1$ and $p(x)=x^{3}+x+1$:

$$
\begin{array}{l|l}
x^{3}+x+1=\left(x^{2}+x+1\right)(x+1)+x & \begin{aligned}
& x=\left(x^{3}+x+1\right)-\left(x^{2}+x+1\right)(x+1) \\
& x^{2}+x+1=x(x+1)+1
\end{aligned} \\
1 & =\left(x^{2}+x+1\right)-x(x+1) \\
& =\left(x^{2}+x+1\right)-\left(\left(x^{3}+x+1\right)-\left(x^{2}+x+1\right)(x+1)\right)(x+1) \\
& =\left(x^{2}+x+1\right)\left(x^{2}\right)+\left(x^{3}+x+1\right)(x+1)
\end{array}
$$

Thus $f(x) g(x)+p(x) q(x)=1=\operatorname{gcd}(f(x), p(x))$; we knew that 1 would be the gcd since $[f(x)] \neq[0]$ so $p(x) \nmid f(x)$ and the only common divisors are constants $c \neq 0$. (If the Euclidean Algorithm gives $f(x) g(x)+p(x) q(x)=c$, we just divide out to get: $f(x)\left(\frac{1}{c} g(x)\right)+p(x)\left(\frac{1}{c} q(x)\right)=1$.
Finally we have $[f(x)][g(x)]=\left[x^{2}+x+1\right]\left[x^{2}\right]=[1] \in K$, and $\frac{1}{a^{2}+\alpha+1}=\alpha^{2}$.
To get the complete list of reciprocals, use relations like $\frac{1}{\alpha^{2}}=\left(\frac{1}{\alpha}\right)^{2}$ and the fact that, for any $\beta, \gamma \in K$, we have $(\beta+\gamma)^{2}=\beta^{2}+2 \beta \gamma+$ $\gamma^{2}=\beta^{2}+\gamma^{2}$. It is also a fact that $\beta^{7}=1$ for any $\beta \in K$, so that $\beta^{-1}=\beta^{6}$.
(c) We know that $y=\alpha, \alpha^{2}$ are roots of $p(y)$, since $p(\alpha)=0$ by the construction of K, and

$$
\begin{aligned}
p\left(\alpha^{2}\right) & =\alpha^{6}+\alpha^{2}+1=\left(\alpha^{3}\right)^{2}+\alpha^{2}+1 \\
& =(\alpha+1)^{2}+\alpha^{2}+1=\left(\alpha^{2}+1\right)+\alpha^{2}+1=0
\end{aligned}
$$

Dividing $(y-\alpha)$ into $p(y)$, we get $p(y)=(y-\alpha)\left(y^{2}+\alpha y+\left(\alpha^{2}+1\right)\right.$. Then dividing $\left(y-\alpha^{2}\right)$ into the second factor, we get the full factorization:

$$
p(y)=y^{3}+y+1=(y-\alpha)\left(y-\alpha^{2}\right)\left(y-\left(\alpha^{2}+\alpha\right) .\right.
$$

Now we have $(y-\alpha)\left(y-\alpha^{2}\right)=y^{2}+\left(\alpha^{2}+\alpha\right) y+(\alpha+1)$, and dividing into $p(y)$, we get:

$$
p(y)=y^{3}+y+1=\left(y^{2}+\left(\alpha^{2}+\alpha\right) y+(\alpha+1)\right)(
$$

(It is a general fact that if K is an extension field of \mathbb{Z}_{p}, and $f(y) \in \mathbb{Z}_{p}[y]$ has a root $\beta \in K$, then $\beta^{2} \in K$ is also a root of $f(y)$. Thus, for the above case, the initial root α of $p(y)$ leads to the other two roots α^{2} and $\left(\alpha^{2}\right)^{2}=\alpha^{2}+\alpha$.)
3. We have a real number α such that $\alpha^{3}+\alpha+1=0$, and the ring $K=\mathbb{Q}[\alpha]=\{f(\alpha)$ for all $f(x) \in \mathbb{Q}[x]\}$.
(a) The mapping $\phi: \mathbb{Q}[x] \rightarrow K$ given by $\phi(f(x))=f(\alpha)$ is a homomorphism since it respects addition, $\phi(f(x)+g(x))=f(\alpha)+$
$g(\alpha)=\phi(f(x))+\phi(g(x))$, and similarly for multiplication. The mapping is surjective since clearly all elements $f(\alpha) \in K$ are hit. The kernel is the set of inputs with output zero:

$$
\operatorname{Ker}(\phi)=\{f(x) \in \mathbb{Q}[x] \text { s.t. } \phi(f(x))=f(\alpha)=0\} .
$$

Like the kernel of any homomorphism, $\operatorname{Ker}(\phi) \subset \mathbb{Q}[x]$ is an ideal. Now, by definition of α, it is a root of $p(x)=x^{3}+x+1$, so $\phi(p(x))=p(\alpha)=0$ and $p(x) \in \operatorname{Ker}(\phi)$. Further, $\operatorname{Ker}(\phi)$ is an ideal of $\mathbb{Q}[x]$, so by absorption we have $p(x) q(x) \in \operatorname{Ker}(\phi)$ for any $q(x)$; indeed, $\phi(p(x) q(x))=p(\alpha) q(\alpha)=0$.
Therefore we have the principal ideal:

$$
(p(x))=\{p(x) q(x) \text { for } q(x) \in \mathbb{Q}[x]\} \subset \operatorname{Ker}(\phi)
$$

Now, $p(x)$ is irreducible in $\mathbb{Q}[x]$. Any non-trivial factorization would have a linear factor, and hence a root in \mathbb{Q}. The Rational Root Test gives all possible candidates for such roots as $r= \pm 1$, but neither of these works, so there is no factorization.
Since $p(x)$ is irreducible, the ideal $(p(x)) \in \mathbb{Q}[x]$ is maximal: the only larger ideal is all of $\mathbb{Q}[x]$. Thus, if $\operatorname{Ker}(\phi) \supset(p(x))$ had any elements other than $p(x) q(x)$, it would be bigger than $(p(x))$ and we would get $\operatorname{Ker}(\phi)=\mathbb{Q}[x]$, which is clealy false: for example $\phi(1)=1 \neq 0$. Therefore $\operatorname{Ker}(\phi)=(p(x))$.
(b) The Isomorphism Theorem states that if $\phi: R \rightarrow S$ is a surjective homomorphism, then we have an isomorphism $S \cong R / \operatorname{Ker}(\phi)$.
In our case, $\phi: \mathbb{Q}[x] \rightarrow K$ is surjective, since every possible output $f(\alpha) \in K$ is hit by some input, namely the polynomial $f(x) \in$ $\mathbb{Q}[x]$. Therefore the Theorem guarantees:

$$
K \cong \frac{\mathbb{Q}[x]}{\operatorname{Ker}(\phi)}=\frac{\mathbb{Q}[x]}{(p(x))}=\frac{\mathbb{Q}[x]}{\left(x^{3}+x+1\right)}
$$

(c) Now that we know that K is a polynomial quotient ring, we can compute in it by the same techniques as in $\# 2$ above.

