MTH 310.002 Spring 2012

Test 11 Exercise Solutions

1. Consider the field Zy; = Z/(17).

(a)

Find the reciprocals 171,271 ... 167! € Z;;.

We find the reciprocal of any [a] # [0] by writing as + pt = 1,
then taking [a]™' = [s]. For example, for 67!, we do the Euclidean
Algorithm for 6, 17:

17=6(2)+5 | 5=17—6(2)

6=5(1)+1 | 1=6—5(1)
=6—(17-6(2))(1)
—6(3) +17(=1)

Thus 6(3) + 17(—1) = 1 = ged(6,17); we knew that 1 would be
the ged since [6] # [0] so 17/6 and the only common divisor is £1.
Finally we have [6][3] = [1] € Z7, and [6]7" = [3].

Once we are comfortable remembering that all numbers are mod
17, we can drop the [ | notation and just write 67! = 3 € Z,;.

The squares of the elements of Zq; are:

1,4,9,16,8,2,15,13,13,15,2,8,16,9,4, 1.
The symmetry comes from the fact that [17—a|?* = [—a)* = [a]*.
The quadratic formula is valid in any field (or even commutative
ring), so long as its features make sense: we must have field el-
ements corresponding to % = (2a)7! and v/b? — 4ac. Here we
get:

E—— (—4 + /2 4(2)(1))
= 471 (-4+£8) =13(—4+5) =13 or 2

Here we use that 47! = 13 and 52 = 8 so /8 = +5.

2. We construct a field K with 8 elements

(a)

There 23 = 8 degree 3 polynomials in Z[z]. For degree < 3, any
non-trivial factorization must include a linear factor, and a linear
factor is equivalent to a root, so the irreducible p(z) are those with
no root in Zy: p(z) = 23+ + 1 and 23 + 2% + 1. Let us take the
first of these: p(z) = 23 + 2z + 1.

We construct K = Zs[x]/(23 + z + 1). The division algorithm
will cut down any polynomial f(z) to a remainder r(x) of degree
< degp(z) =3, i.e. r(x) = ar?+br+c, and these are the standard
forms of elements. In compact notation we write r(«) for [r(z)]:

K =10, 1, a, a+1, o?, o*+1, a*+a, o*+a+1}

Here o = [x], satisfying p(a) =a®* +a+1=0€ K.



(b) In pefect analogy to #1(a), we find the reciprocal of any f(a) =
[f(x)] # [0] by writing f(z)g(x) + p(z)q(x) = 1, then taking
7 = @)™ = [g(2)] = g(a).

For example, for — +1a — = [#*+2+1]7", we do the Euclidean Al-
gorithm for f(z) = z?+z+1 and p(z) = *+x+1:

B 4a+1) — (@ +z+1)(z+1)

r?+z+1) — z(z+1)

22 +z+1) — ((P4a+1)—(2®+z+1)(z+1) ) (x+1)
v tar+1)(2%) + (27 +a+1)(z+1)

Pta+l=(2?+z+1)(z+1) + 2 | =
?*+r+l=z(z+1) +1 1=

AA/_\/_\

Thus f(x)g(x) + p(x)q(z) = 1 = ged(f(x), p(x)); we knew that

1 would be the ged since [f(x)] # [0] so p(x)) f(z) and the only

common divisors are constants ¢ # 0. (If the Euclidean Algo-

rithm gives f(x)g(z) + p(z)q(z) = ¢, we just divide out to get:

f(@)(39(2)) + p(x)(zq(x)) = 1.)

Finally we have [f(z)][g(z)] = [z*+z+1][2?*] = [1] € K, and

et = 0%
To get the complete list of reciprocals, use relations like -1 5= (1)2
and the fact that, for any 3,7 € K, we have (3+7)? 52—1—267—1—
7% = B2 +~2. Tt is also a fact that 37 = 1 for any 3 € K, so that
/371 — 56.

(c) We know that y = «, a? are roots of p(y), since p(a) = 0 by the
construction of K, and

pla?) = a®+al+1=(?)?+a%+1
= (a+1)*+a?+1=(a*+1)+a*+1=0.

Dividing (y — ) into p(y), we get p(y) = (y—a)(y* +ay+ (a®+1).
Then dividing (y — o?) into the second factor, we get the full
factorization:

py) =y’ +y+1=(y—a)y—a?)(y— (a®+a).
Now we have (y—a)(y—a?) = y*+ (a*+a)y+(a+1), and dividing
into p(y), we get:
py) =y’ +y+1= (" + (a®+a)y + (at+1))(

(It is a general fact that if K is an extension field of Z,, and
f(y) € Z,|y] has aroot 8 € K, then 5% € K is also a root of f(y).
Thus, for the above case, the initial root a of p(y) leads to the
other two roots a? and (a?)? = o®+a.)

3. We have a real number « such that o® + o +1 = 0, and the ring
K = Qla] = {f(a) for all f(z) ¢ Qla]}.

(a) The mapping ¢ : Q[z] — K given by ¢(f(z)) = f(«a) is a ho-
momorphism since it respects addition, ¢(f(x) + g(x)) = f(a) +



g(la) = o(f(x)) + ¢(g(x)), and similarly for multiplication. The
mapping is surjective since clearly all elements f(a) € K are hit.

The kernel is the set of inputs with output zero:

Ker(¢) = {f(z) € Qlz] s.t. &(f(2)) = f(a) = 0}.

Like the kernel of any homomorphism, Ker(¢) C Q[z] is an ideal.
Now, by definition of «, it is a root of p(x) = 2 + z + 1, so
o(p(x)) = pla) = 0 and p(z) € Ker(¢). Further, Ker(¢) is an
ideal of Q[x], so by absorption we have p(z)q(z) € Ker(¢) for any
q(z); indeed, ¢(p(x)q(x)) = p(a)g(a) = 0.

Therefore we have the principal ideal:

(p(x)) = {p(x)q(z) for q(z) € Q[z]} C Ker(¢).

Now, p(z) is irreducible in Q[z]. Any non-trivial factorization
would have a linear factor, and hence a root in Q. The Rational
Root Test gives all possible candidates for such roots as r = £1,
but neither of these works, so there is no factorization.

Since p(z) is irreducible, the ideal (p(x)) € Q[z] is maximal: the
only larger ideal is all of Q[z]. Thus, if Ker(¢) D (p(z)) had any
elements other than p(z)q(z), it would be bigger than (p(z)) and
we would get Ker(¢) = Q|z], which is clealy false: for example
(1) =1 # 0. Therefore Ker(¢) = (p(x)).

The Isomorphism Theorem states that if ¢ : R — S is a surjective
homomorphism, then we have an isomorphism S = R/Ker(¢).

In our case, ¢ : Q[z] — K is surjective, since every possible output
f(a) € K is hit by some input, namely the polynomial f(x) €
Q[z]. Therefore the Theorem guarantees:

e Q0 QW 0l
Ker(9)  (p()) (@ +a+1)

Now that we know that K is a polynomial quotient ring, we can
compute in it by the same techniques as in #2 above.



