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Test II Exercise Solutions

1. Consider the field Z17 = Z/(17).

(a) Find the reciprocals 1−1, 2−1, . . . , 16−1 ∈ Z17.
We find the reciprocal of any [a] 6= [0] by writing as + pt = 1,
then taking [a]−1 = [s]. For example, for 6−1, we do the Euclidean
Algorithm for 6, 17:

17 = 6(2) + 5 5 = 17− 6(2)

6 = 5(1) + 1 1 = 6− 5(1)
= 6− (17− 6(2))(1)
= 6(3) + 17(−1)

Thus 6(3) + 17(−1) = 1 = gcd(6, 17); we knew that 1 would be
the gcd since [6] 6= [0] so 17/| 6 and the only common divisor is ±1.
Finally we have [6][3] = [1] ∈ Z17, and [6]−1 = [3].

Once we are comfortable remembering that all numbers are mod
17, we can drop the [ ] notation and just write 6−1 = 3 ∈ Z17.

(b) The squares of the elements of Z17 are:

1, 4, 9, 16, 8, 2, 15, 13, 13, 15, 2, 8, 16, 9, 4, 1.

The symmetry comes from the fact that [17−a]2 = [−a]2 = [a]2.

(c) The quadratic formula is valid in any field (or even commutative
ring), so long as its features make sense: we must have field el-
ements corresponding to 1

2a
= (2a)−1 and

√
b2 − 4ac. Here we

get:

x = 1
2(2)

(
−4±

√
42 − 4(2)(1)

)
= 4−1

(
−4±

√
8
)

= 13(−4± 5) = 13 or 2

Here we use that 4−1 = 13 and 52 = 8 so
√

8 = ±5.

2. We construct a field K with 8 elements

(a) There 23 = 8 degree 3 polynomials in Z2[x]. For degree ≤ 3, any
non-trivial factorization must include a linear factor, and a linear
factor is equivalent to a root, so the irreducible p(x) are those with
no root in Z2: p(x) = x3 + x+ 1 and x3 + x2 + 1. Let us take the
first of these: p(x) = x3 + x+ 1.

We construct K = Z2[x]/(x3 + x + 1). The division algorithm
will cut down any polynomial f(x) to a remainder r(x) of degree
< deg p(x) = 3, i.e. r(x) = ax2+bx+c, and these are the standard
forms of elements. In compact notation we write r(α) for [r(x)]:

K = {0, 1, α, α+1, α2, α2+1, α2+α, α2+α+1}

Here α = [x], satisfying p(α) = α3 + α + 1 = 0 ∈ K.



(b) In pefect analogy to #1(a), we find the reciprocal of any f(α) =
[f(x)] 6= [0] by writing f(x)g(x) + p(x)q(x) = 1, then taking
1

f(α)
= [f(x)]−1 = [g(x)] = g(α).

For example, for 1
α2+α+1

= [x2+x+1]−1, we do the Euclidean Al-
gorithm for f(x) = x2+x+1 and p(x) = x3+x+1:

x3+x+1 = (x2+x+1)(x+1) + x x= (x3+x+1)− (x2+x+1)(x+1)

x2+x+1 =x(x+1) + 1 1 = (x2+x+1)− x(x+1)
= (x2+x+1)− ( (x3+x+1)−(x2+x+1)(x+1) ) (x+1)
= (x2+x+1)(x2) + (x3+x+1)(x+1)

Thus f(x)g(x) + p(x)q(x) = 1 = gcd(f(x), p(x)); we knew that
1 would be the gcd since [f(x)] 6= [0] so p(x)/| f(x) and the only
common divisors are constants c 6= 0. (If the Euclidean Algo-
rithm gives f(x)g(x) + p(x)q(x) = c, we just divide out to get:
f(x)(1

c
g(x)) + p(x)(1

c
q(x)) = 1.)

Finally we have [f(x)][g(x)] = [x2+x+1][x2] = [1] ∈ K, and
1

a2+α+1
= α2.

To get the complete list of reciprocals, use relations like 1
α2 =

(
1
α

)2
and the fact that, for any β, γ ∈ K, we have (β+γ)2 = β2+2βγ+
γ2 = β2 + γ2. It is also a fact that β7 = 1 for any β ∈ K, so that
β−1 = β6.

(c) We know that y = α, α2 are roots of p(y), since p(α) = 0 by the
construction of K, and

p(α2) = α6 + α2 + 1 = (α3)2 + α2 + 1
= (α+1)2 + α2 + 1 = (α2+1) + α2 + 1 = 0.

Dividing (y−α) into p(y), we get p(y) = (y−α)(y2+αy+(α2+1).
Then dividing (y − α2) into the second factor, we get the full
factorization:

p(y) = y3 + y + 1 = (y − α)(y − α2)(y − (α2+α).

Now we have (y−α)(y−α2) = y2+(α2+α)y+(α+1), and dividing
into p(y), we get:

p(y) = y3 + y + 1 = (y2 + (α2+α)y + (α+1))(

(It is a general fact that if K is an extension field of Zp, and
f(y) ∈ Zp[y] has a root β ∈ K, then β2 ∈ K is also a root of f(y).
Thus, for the above case, the initial root α of p(y) leads to the
other two roots α2 and (α2)2 = α2+α.)

3. We have a real number α such that α3 + α + 1 = 0, and the ring
K = Q[α] = {f(α) for all f(x) ∈ Q[x]}.

(a) The mapping φ : Q[x] → K given by φ(f(x)) = f(α) is a ho-
momorphism since it respects addition, φ(f(x) + g(x)) = f(α) +



g(α) = φ(f(x)) + φ(g(x)), and similarly for multiplication. The
mapping is surjective since clearly all elements f(α) ∈ K are hit.

The kernel is the set of inputs with output zero:

Ker(φ) = {f(x) ∈ Q[x] s.t. φ(f(x)) = f(α) = 0}.

Like the kernel of any homomorphism, Ker(φ) ⊂ Q[x] is an ideal.

Now, by definition of α, it is a root of p(x) = x3 + x + 1, so
φ(p(x)) = p(α) = 0 and p(x) ∈ Ker(φ). Further, Ker(φ) is an
ideal of Q[x], so by absorption we have p(x)q(x) ∈ Ker(φ) for any
q(x); indeed, φ(p(x)q(x)) = p(α)q(α) = 0.

Therefore we have the principal ideal:

(p(x)) = {p(x)q(x) for q(x) ∈ Q[x]} ⊂ Ker(φ).

Now, p(x) is irreducible in Q[x]. Any non-trivial factorization
would have a linear factor, and hence a root in Q. The Rational
Root Test gives all possible candidates for such roots as r = ±1,
but neither of these works, so there is no factorization.

Since p(x) is irreducible, the ideal (p(x)) ∈ Q[x] is maximal: the
only larger ideal is all of Q[x]. Thus, if Ker(φ) ⊃ (p(x)) had any
elements other than p(x)q(x), it would be bigger than (p(x)) and
we would get Ker(φ) = Q[x], which is clealy false: for example
φ(1) = 1 6= 0. Therefore Ker(φ) = (p(x)).

(b) The Isomorphism Theorem states that if φ : R→ S is a surjective
homomorphism, then we have an isomorphism S ∼= R/Ker(φ).

In our case, φ : Q[x]→ K is surjective, since every possible output
f(α) ∈ K is hit by some input, namely the polynomial f(x) ∈
Q[x]. Therefore the Theorem guarantees:

K ∼=
Q[x]

Ker(φ)
=

Q[x]

(p(x))
=

Q[x]

(x3 + x+ 1)
.

(c) Now that we know that K is a polynomial quotient ring, we can
compute in it by the same techniques as in #2 above.


